Modeling chemical reactions in contact glow discharge electrolysis

Bocong Zheng¹, Keliang Wang¹, Maheshwar Shrestha¹, Thomas Schuelke^{1,2}, and Qi Hua Fan^{1,2}

 Fraunhofer Center for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI 48824, USA
 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

October 23, 2018, Long Beach, CA

Contact glow discharge electrolysis

What is contact glow discharge electrolysis (CGDE)?

also called "plasma electrolysis" = electrolysis + plasma discharge

discharge electrolysis

Physical-processes-dominated discharge

Vapor layer induced by Joule heating: High resistance Large potential drop

> Large (100 nm ~ 2 um) and nonuniform particles + irregular porous morphology

Physical processes + chemical reactions (dominated)

Physical process in PE. (a) Plasma formation around cathode, (b) plasma expansion and induction of shock wave, (c) collapse of plasma bubble due to electrolyte quench, and (d) explosive impact on electrode surface.

Decoupling of physical processes and chemical

(a) Porous and (b) textured Si wafer obtained by PE using electrolyte with glycerol : water ratios of (a) 5:1 and (b) 10:1. In both cases, a mirror-polished Si wafer was used as cathode.

Si nanoparticles of ~80 nm size created by CGDF.

Textured surface and nanoparticles can only be created by anisotropic chemical etching: Decoupling of physical processes and chemical reactions

Mechanisms of decoupling

MICHIGAN STATE

Model description

- Further understanding of the plasma-liquid interactions requires modeling
- The difficulty for detailed modeling: Complicated physical and chemical reactions
- Decoupling: only simulate the chemical reactions in CGDE 1-the wire cathode

3-the plasma-liquid interface

29 species and 84 reactions

Species considered in the cathodic plasma electrolysis model.

Species	Neutral	Positive	Negative
H-species	H, H ₂ , H(2p), H(2s)	$\rm{H^{+},H_{2}^{+},H_{3}^{+}}$	H^{-}
O-species	$O, O_2, O_3, O_2(a)$	O^{+}, O_{2}^{+}	$O^{-}, O_{2}^{-}, O_{3}^{-}$
OH-species	OH, H_2O, HO_2, H_2O_2	OH^+, H_2O^+, H_3O^+	OH^-
Water clusters		$\rm H_2O_3^+, \rm H_4O_2^+, \rm H_5O_2^+$	
Others			P

Top-view of discharge

Simplified as 1D

cylindrical coordinate

Model description

Poisson's equation

Ambient

air

Continuity equation
 For each species except water
 Drift-diffusion approximation

Neutral

species

Electrolyte

vaporization

$$\frac{\partial n_j}{\partial t} + \nabla \cdot \mathbf{\Gamma}_j = R_j - k_{\text{loss}} n_j$$
$$\mathbf{\Gamma}_j = z_j \mu_j n_j \mathbf{E} - \nabla (D_j n_j)$$

$$\frac{\partial n_{\varepsilon}}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_{\varepsilon} + \boldsymbol{E} \cdot \boldsymbol{\Gamma}_{\mathrm{e}} = Q$$

$$\nabla^2 \varphi = \frac{e}{\varepsilon_0} (\sum_i n_i - n_e)$$

H₂O number density

$$n_{\rm H_2O} = n_{\rm tot} - \sum_{j \neq \rm H_2O} n_j$$

Discharge

system is not

closed

Loss rate coefficient

Fit k_{loss} with experimentally measured gas yields
From Faraday's lav R_{H2} = J_d/(2eN_Ad)
faradaic yield of H y(H₂) = 0.5 mol/(mol·electron)
Total chemical yield of H y(H₂^{tot}) = R_{H2}^{kot}/(R_{H2}) R_{H2}^{tot} + y(H₂) R_{H2}^{tot} = c_{H2}k_{loss}
Non-faradaic yield of H₂ and Cy(H₂^E) = y(H₂^{tot}) - y(H₂) y(O₂^E) = c_{O2}k_{loss}/(R_{H2} + y(H₂)

Input parameters for a base case simulation of cathodic PE discharge			
Parameter	Value	Description	
р	1 atm	Pressure	
l	5 mm	Cathode length immersed in the liquid	
r_1	1 mm	Cathode wire radius	
Vd	250 V	Discharge voltage	
Id	0.3 A	Discharge current	
R _b	250Ω	Ballast resistance	
d	200 µm	Vapor layer thickness	
Tg	500 K	Vapor layer temperature	
kloss	$45 {\rm s}^{-1}$	Loss rate of neutral species	
$\gamma_{\rm H_2O_2}$	0.01	Sticking coefficient of H_2O_2 at the liquid anode	
γн	1	γα	
γο	1	γα	
γон	1	γα	
γm	1	γ_{α} for de-excitation at the electrode surface	
Ye,c, Ye,a	1	γ_e of electrons at the cathode or anode	
γ_{ε}	1	Sticking coefficient for electron energy	
$r_{i,\mathrm{p,c}}$	0	r_i of positive ions at the cathode	
r _{i,p,a}	1	r_i of positive ions at the anode	
r _{i,n,c}	1	r_i of negative ions at the cathode	
r _{i,n,a}	0	r_i of negative ions at the anode	

Number densities

Primary neutral species

■ H₂, O₂

- $\blacksquare n_{\rm H2}/n_{\rm O2} \approx 2$
- Dissociation degree of H₂ and O₂ < 1%</p>
- Primary positive ions
 H₅O₂⁺, O⁺, H₃⁺

Primary negative ions

■ O₂⁻, O⁻, O₃⁻, OH⁻

Influence of undetermined parameters

Influence of vapor layer thickness

- Dozens to hundreds of um
- Determined by the thermal energy gain and loss

100

n

U

E

200

Distance from cathode (μ m)

300

USA

Influence of gas temperature

- As increasing the gas temperature
 - Electron density slightly increases
 - Electron temperature & electric potential are barely influenced

The fluctuation of temperature in this range has no significant influence on the discharge

11

Conclusions

- It has been found that with the increase of glycerol/water ratio in the electrolyte, the physical processes and the chemical reactions could be decoupled. A textured electrode surface and a uniform nanoparticle size distribution can be created through a chemical-reaction-dominated process instead of an irregular porous surface and a large and nonuniform distribution produced by the physical-reaction-dominated interactions. The formation of a textured surface is attributed to the anisotropic chemical etching on the silicon electrode by the reactive species generated in the plasmas.
- The cathodic plasma electrolysis discharge process is investigated using a one-dimensional plasma fluid model with constraint conditions obtained from the experiments. The model is developed under the conditions when the physical interactions between the plasma and the working electrode is suppressed, and the discharge is chemical-reaction-dominated. The modeling results demonstrate a high plasma density on the order of 10¹⁹ m³ and a low electron temperature of about 1.2-1.3 V in the bulk plasma region. The plasma is highly electronegative, and the dominant neutral species are H₂ and O₂ dissociated from water vapor. A linear relationship between the discharge region, due to the high Joule heating from the working electrode. A vapor layer thickness greater 100 um is required to obtain a fully developed discharge. The fluctuation of gas temperature has no great influence on the discharge process.

Thank you for your attention

MICHIGAN' STATE